IEDM

Session 29: Circuit and Device Interaction Advanced Platform Technologies

Wednesday, December 6
Grand Ballroom B
Co-Chairs: Chung-Hsun Lin, GLOBALFOUNDRIES
Kang-ill Seo, Samsung

9:05 AM
29.1 A 10nm High Performance and Low-Power CMOS Technology Featuring 3rd Generation FinFET Transistors, Self-Aligned Quad Patterning, Contact over Active Gate and Cobalt Local Interconnects, C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall, N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q. Fu, H. Gomez, W. Han, D. Hanken, M. Haran, M. Hattendorf, R. Heussner, H. Hiramatsu, B. Ho, S. Jaloviar, I. Jin, S. Joshi, S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman, K. Lee, J. Leib, A. Madhavan, K. Marla, H. Meyer, T. Mule, C. Parker, S. Parthasarathy, C. Pelto, L. Pipes, I.Post, M. Prince, A. Rahman, S. Rajamani, A. Saha, J. Dacuna Santos, M. Sharma, V. Sharma, J. Shin, P. Sinha, P. Smith, M. Sprinkle, A. St. Amour, C. Staus, R. Suri, D. Towner, A. Tripathi, A. Tura, C. Ward, A. Yeoh, Intel Corporation

A 10nm logic technology using 3rd-generation FinFET transistors with Self-Aligned Quad Patterning (SAQP) for critical patterning layers, and cobalt local interconnects at three local interconnect layers is described. For high density, a novel self-aligned contact over active gate process and elimination of the dummy gate at cell boundaries are introduced. The transistors feature rectangular fins with 7nm fin width and 46nm fin height, 5th generation high-k metal gate, and 7th-generation strained silicon. Four or six workfunction metal stacks are used to enable undoped fins for low Vt, standard Vt and optional high Vt devices. Interconnects feature 12 metal layers with ultra-low-k dielectrics throughout the interconnect stack. The highest drive currents with the highest cell densities are reported for a 10nm technology.

9:30 AM
29.2 Performance and Design Considerations for Gate-All-Around Stacked-NanoWires FETs (Invited), S. Barraud, V. Lapras, B. Previtali, M.P. Samson*, J. Lacord, S. Martinie, M.-A. Jaud, S. Athanasiou, F. Triozon, O. Rozeau, J.M. Hartmann, C. Vizioz, C. Comboroure*, F. Andrieu, J.C. Barbé, M. Vinet, and T. Ernst, CEA, LETI, MINATEC campus and Univ. Grenoble Alpes, *STMicroelectronics

This paper presents recent progress on Gate-All- Around (GAA) stacked-NanoWire (NW) / NanoSheet (NS) MOSFETs. Key technological challenges will be discussed and recent research results presented. Width-dependent carrier mobility in Si NW/NS and FinFET will be analyzed, and intrinsic performance and design considerations of GAA structures will be discussed and compared to FinFET devices with a focus on electrostatics, parasitic capacitances and different layout options. The results show that more flexibility can be achieved with stacked-NS transistors in order to manage power- performance optimization.

9:55 AM
29.3 Accurate Performance Evaluation for the Horizontal Nanosheet Standard-Cell Design Space Beyond 7nm Technology, Y.M. Lee, M.H. Na, A. Chu, A. Young, T. Hook, L. Liebmann**, E.J. Nowak, S.H. Baek*, R. Sengupta*, H. Trombley, and X. Miao, IBM Research, *Samsung Electronics, **GLOBALFOUNDRIES

Vertically-stacked horizontal gate-all-around Nanosheet structures have been recognized as good candidates to achieve improved power-performance and area scaling for beyond the 7nm node. We present a quantitative performance evaluation of horizontal Nanosheet structures across a wide range of sub-7nm design space, including key design styles and unique Nanosheet challenges.

10:20 AM
29.4 22FFL: A High Performance and Ultra Low Power FinFET Technology for Mobile and RF Applications, B. Sell, B. Bigwood, S. Cha, Z. Chen, P. Dhage, P. Fan, M. Giraud-Carrier, A. Kar, E. Karl, C.-J. Ku, R. Kumar, T. Lajoie, H.-J. Lee, G. Liu, S. Liu, Y. Ma, S. Mudanai, L. Nguyen, L. Paulson, K. Phoa, K. Pierce, A. Roy, R. Russell, J. Sandford, J. Stoeger, N. Stojanovic, A. Sultana, J. Waldemer, J. Wan, W. Xu, D. Young, J. Zhang, Y. Zhang, and P. Bai, Intel Corporation

A FinFET technology named 22FFL has been developed that combines high-performance, ultra-low power logic and RF transistors as well as single-pattern backend flow for the first time. High performance transistors exhibit 57%/87% higher NMOS/PMOS drive current compared to the previously reported 22nm technology. New ultra-low power logic devices are introduced that reduce bit cell leakage by 28x compared to a regular SRAM cell enabling a new 6T low-leakage SRAM with bit cell leakage of sub 1pA/cell. An RF device with optimized layout has been developed and shows excellent fT/fMAX of (230GHz/284GHz) and (238GHz/242GHz) for NMOS and PMOS respectively.

10:45 AM
29.5 A 7nm CMOS Technology Platform for Mobile and High Performance Compute Application (Late News), S. Narasimha, B. Jagannathan, A. Ogino, D. Jaeger, B. Greene, C. Sheraw, K. Zhao, B. Haran, U. Kwon, A.K.M. Mahalingam, B. Kannan, B. Morganfeld, J. Dechene, C. Radens, A. Tessier, A. Hassan, H. Narisetty, I. Ahsan, M. Aminpur, C. An, M. Aquilino, A. Arya, R. Augur, N. Baliga, R. Bhelkar, G. Biery, A. Blauberg, N. Borjemscaia, A. Bryant, L. Cao, V. Chauhan, M. Chen, L. Cheng, J. Choo, C. Christiansen, T. Chu, B. Cohen, R. Coleman, D. Conklin, S. Crown, A. da Silva, D. Dechene, G. Derderian, S. Deshpande, G. Dilliway, K. Donegan, M. Eller, Y. Fan, Q. Fang, A. Gassaria, R. Gauthier, S. Ghosh, G. Gifford, T. Gordon, M. Gribelyuk, G. Han, J.H. Han, K. Han, M. Hasan, J. Higman, J. Holt, L. Hu, L. Huang, C. Huang, T. Hung, Y. Jin, J. Johnson, S. Johnson, V. Joshi, M. Joshi, P. Justison, S. Kalaga, T. Kim, W. Kim, R. Krishnan, B. Krishnan, Anil K., M. Kumar, J. Lee, R. Lee, J. Lemon, S.L. Liew, P. Lindo, M. Lingalugari, M. Lipinski, P. Liu, J. Liu, S. Lucarini, W. Ma, E. Maciejewski, S. Madisetti, A. Malinowski, J. Mehta, C. Meng, S. Mitra, C. Montgomery, H. Nayfeh, T. Nigam, G. Northrop, K. Onishi, C. Ordonio, M. Ozbek, R. Pal, S. Parihar, O. Patterson, E. Ramanathan, I. Ramirez, R. Ranjan, J. Sarad, V. Sardesai, S. Saudari, C. Schiller, B. Senapati, C. Serrau, N. Shah, T. Shen, H. Sheng, J. Shepard, Y. Shi, M.C. Silvestre, D. Singh, Z. Song, J. Sporre, P. Srinivasan, Z. Sun, A. Sutton, R. Sweeney, K. Tabakman, M. Tan, X. Wang, E. Woodard, G. Xu, D. Xu, T. Xuan, Y. Yan, J. Yang, K.B. Yeap, M. Yu, A. Zainuddin, J. Zeng, K. Zhang, M. Zhao, Y. Zhong, R. Carter,C-H. Lin, S. Grunow, C. Child, M. Lagus, R. Fox, E. Kaste, G. Gomba, S. Samavedam, P. Agnello, and DK Sohn, GLOBALFOUNDRIES

We present a fully integrated 7nm CMOS platform featuring a 3rd generation finFET architecture, SAQP for fin formation, and SADP for BEOL metallization. This technology reflects an improvement of 2.8X routed logic density and >40% performance over the 14nm reference technology described in [1-3]. A full range of Vts is enabled on-chip through a unique multiworkfunction process. This enables both excellent low voltage SRAM response and highly scaled memory area simultaneously. The HD 6-T bitcell size is 0.0269um2. This 7nm technology is fully enabled by immersion lithography and advanced optical patterning techniques (like SAQP and SADP). However, the technology platform is also designed to leverage EUV insertion for specific multi-patterned (MP) levels for cycle time benefit and manufacturing efficiency. A complete set of foundation and complex IP is available in this advanced CMOS platform to enable both High performance Compute (HPC) and mobile applications.